RollSCAN-1 Scanner Controller Interface Summary

Author: Eugene P. Gerety Date: May 10, 2001 Current Revision: C Revision Date: June 11, 2001 The following notation convention applies to signal type in all pin function tables: I=input, O=output, P=power/gnd, AO=analog output, AI=analog input

J1 - Host Port Connector

J1 Pin Locations (Top View)

The host port on the RollSCAN-1 controller is jumper-configurable for either parallel port mode (EPP- bidirectional) or microcontroller (8051-style) interface. (see JP3 description below). In parallel port mode, the interface can be connected directly to a PC's EPP-compatible parallel port connector. In microcontroller (μ C) mode, data bits 0-7 are an 8-bit bidirectional data bus, and the –CS, –RD, and –WR signals control the bus transactions with the microcontroller. See the LM9830 data sheet for timing details.

J1 Pin Functions

Pin	Name	Туре	Function/Description
#			
1	-Strobe/-WR	Ι	PP Mode: STROBE, μC Mode: Write Strobe
3	HI_D0	I/O	Data Bit 0 – (Bidirectional)
5	HI_D1	I/O	Data Bit 1 – (Bidirectional)
7	HI_D2	I/O	Data Bit 2 – (Bidirectional)
9	HI_D3	I/O	Data Bit 3 – (Bidirectional)
11	HI_D4	I/O	Data Bit 4 – (Bidirectional)
13	HI_D5	I/O	Data Bit 5 – (Bidirectional)
15	HI_D6	I/O	Data Bit 6 – (Bidirectional)
17	HI_D7	I/O	Data Bit 7 – (Bidirectional)
19	-ACK	0	PP Mode: ACK, µC Mode: <unused></unused>
21	-BUSY	0	PP Mode: BUSY, μC Mode: <unused></unused>
23	PAPER_ERR	0	PP Mode: PAPER OUT Signal, uP Mode: <unused></unused>
25	-SLCTIN/ALE	Ι	PP Mode: SELECT IN, µC Mode: ALE (address latch enable)
2	-AUTOFD/-	Ι	PP Mode: AUTOFD, μC Mode: Read Strobe
	RD		
4	-ERROR	0	PP Mode: Error, μC Mode: <unused></unused>
6	-INIT/-CS	Ι	PP Mode: INIT, μC Mode: Chip Select
8	SELECT	0	PP Mode: SELECT, µC Mode: <unused></unused>
All	GND	-	Digital Ground
others			

J2 - Printer Port Passthrough Controls

Single Row, 4 Position Pin Header on 0.1" Centers

The RollSCAN-1 supports printer port pass-through operation with the addition of two external components: a 74HCT244 buffer and a 74HCT374 buffer/latch. See the LM9830 data sheet for application details.

Printer Passthrough Controls

Pin	Name	Туре	Function/Description
#			
1	+5V	Р	5V Power for external buffer/latch
2	-LATCH	0	Gate Control for external latch
3	TRISTATE	0	Output disable control for external buffer
4	GND	Р	Ground for external buffer/latch

J3 - Stepping Motor Connector

The RollSCAN-1's stepping motor drive circuitry accommodates either bipolar or unipolar drive (see illustrations above). Bipolar drive arrangements will have four-wire motor connections. Unipolar drive arrangements will have either 5 motor connections (if the winding centers are connected together) or 6 motor connections. When configured for unipolar drive, a set of power inverters is engaged to provide current source capability. The stepping motor connector pinouts are given below:

J3 Pin Functions

Pin #	Name	Туре	Function/Description
1	A +	AO	Bipolar: Winding 1+, Unipolar: Winding 1 (0 degree)
2	А-	AO	Bipolar: Winding 1-, Unipolar: Winding 3 (90 degree)
3	B +	AO	Bipolar: Winding 2+, Unipolar: Winding 2 (180 degree)
4	В-	AO	Bipolar: Winding 2-, Unipolar: Winding 4 (270 degree)
5,6	MOTOR	Р	To common wire for unipolar drive
	SUPPLY		

<u>J4 – Paper Sensor/Buttons</u>

Single Row, 6 Position Pin Header on 0.1" Centers

The RollSCAN-1 makes specific provision for an optical or electromechanical paper sensor (PSENSE 1) and for a Start/Pause Pushbutton (PSENSE 2). Two general purpose, software configurable I/O pins are uncommitted and can be used for any desired purpose. Logic power and ground are provided for an external photo-sensor, pull-up resistors and/or switch de-bounce circuitry.

J4 Pin Functions

Pin #	Name	Туре	Function/Description
1	PSENSE 2	Ι	Start/Pause Pushbutton (active high)
2	PSENSE 1	Ι	Paper Sensor input (active high)
3	MISC I/O 2	I/O	Additional Sensor/Switch/Control Signal (uncommitted)
4	MISC I/O 1	I/O	Additional Sensor/Switch/Control Signal (uncommitted)
5	+5V	Р	Power for external sensors/switches
6	GND	Р	Ground for external sensors/switches

<u>J5 – Power Connector</u>

Single Row, 6 Position Pin Header on 0.1" Centers

The RollSCAN-1 provides on-board regulation for the logic supply and provides connections for user-supplied CIS Power, Illuminator Power and Motor Power.

J5 Pin Functions

Pin	Name	Туре	Function/Description
#			
1	Bulk Power	-	Unregulated Power for Logic (8V – 12V DC)
2	CCD/CIS Pwr	-	Power Supply for CCD/CIS
3	Illum. Pwr	-	Power Supply for Illuminator
4	Motor Pwr	-	Motor Supply
5,6	GND	-	Main Input Ground Connection point

J6 – CCD/CIS Connector

J6 Pin Locations (Top View)

J6 Pin Functions

Pin	Name	Туре	Function/Description
#			
1,2	+5V	Р	5 Volt Logic Supply
3,4	PGND	Р	Main Power Ground (Illum Return ONLY)
5,6	CCD PWR	Р	CCD Power (User Supplied – See J5-2)
7,8	ILLUM PWR	Р	Illuminator Power (User Supplied – See J5-3)
9	LED_R	AO	Red LED Drive (May be used to control CCFL Intensity)
10	LED_G	AO	Green LED Drive (May be used to drive CCFL)
11	LED_B	AO	Blue LED Drive (May be used to control CCFL Intensity)
12	PGND	Р	Main Power Ground (see pins 3,4)
13	VREF	AO	Buffered Reference Voltage (See HDR 1)
14	AGND/DGND	Р	Signal Ground (selectable, see JP4)
15	OS_R	AI	CCD/CIS Red Output Signal (tri-linear color only)
16	OS_G	AI	CCD/CIS Green Output Signal (tri-linear color only)
17	OS_B	AI	CCD/CIS Blue Output Signal or CCD/CIS out (single output)
18	AGND/DGND	Р	Signal Ground (see pins 13,14)
19	CP1	0	CCD/CIS CP1 signal (Clamp Pulse 1)
20	CP2	0	CCD/CIS CP2 signal (Clamp Pulse 2)
21	TR1	0	CCD/CIS TR1 signal (Transfer/Shift Pulse 1)
22	TR2	0	CCD/CIS TR2 signal (Transfer/Shift Pulse 2)
23	Φ1	0	CCD/CIS Clock Signal, Phase 1
24	Φ2	0	CCD/CIS Clock Signal, Phase 2
25	RST	0	CCD/CIS Reset Pulse (Integration Start/Stop)
26	DGND	Р	Digital Ground

The RollSCAN-1's CCD/CIS interface provides a great deal of flexibility in connecting to Contact Image Sensor (CIS) modules and Charge-Coupled Device (CCD) line arrays. In most cases, additional circuitry is not required, although a CCFL inverter is not provided. The 5V logic supply is brought out to the connector, and separate CCD Power and Illuminator Power connections are provided, if necessary. If a CCFL or other white light source is to be used, an LED output can be adapted to control the CCFL inverter. 4-step CCFL dimming (off-low-med-high) is possible by adapting the two remaining LED outputs in to control the dimming circuitry on the inverter.

On tri-linear color sensors (using white illumination), all three CCD/CIS analog output signals are used. When cycled R-G-B illumination is employed on a single-output sensor, the CCD/CIS output is connected to the BLUE input. The 9830 takes care of the rest under software control.

<u>HDR 1-3</u>

Three 14-pin DIP sockets are provided on the RollSCAN-1 circuit board for monitoring certain critical signals to aid in debugging your scanner design. The even-numbered pins of these sockets are all grounded. Note that the pinout of these headers does NOT conform to "standard" DIP pin numbering. The correct pinout is shown below:

1	\bigcirc	_ ()	2	
3	\odot	\odot	4	
5	\odot	\odot	6	
7	0	0	8	
9	\odot	0	10	
11	\odot	\odot	12	
13	\odot	\odot	14	
14 pin DIP Header Pin Numbering				

HDR 1 – CCD/CIS Analog Signals

HDR 1 provides monitoring points for the CCD/CIS analog signals. HDR1 also permits selection of one of four reference voltages to be provided to the CCD/CIS via the reference amplified, and permits bridging of the three CCD/CIS input decoupling capacitors. MONITOR THESE SIGNALS ONLY WITH HIGH-IMPEDANCE INSTUMENTATION TO AVOID DISRUPTING PROPER CIRCUIT FUNCTION.

HDR 1 Pin Functions

Pin	Name	Туре	Function/Description
#			
1	OS_R_DC	AI	Red output signal from CCD/CIS (9830 side of decoupling cap)
3	OS_G_DC	AI	Green output signal from CCD/CIS (9830 side of decoupling cap)
5	OS_B_DC	AI	Blue output signal from CCD/CIS (9830 side of decoupling cap)
7	VREF_HI	AO	LM9830 internal high reference
9	VREF_MID	AO	LM9830 internal mid reference
11	VREF_LO	AO	LM9830 internal low reference
13	VBANDGAP	AO	LM9830 internal bandgap reference
2	OS_R	AO	Red output signal from CCD/CIS (sensor side of decoupling cap)
4	OS_G	AO	Green output signal from CCD/CIS (sensor side of decoupling cap)
6	OS_B	AO	Blue output signal from CCD/CIS (sensor side of decoupling cap)
8	REF AMP	AI	Input to reference buffer amplifier – (buffered output -> J6-13)
10,12,14	AGND	Р	Analog Ground Reference

HDR 2 – CCD/CIS Timing Signals

HDR 2 provides monitoring points for the CCD/CIS timing signals.

HDR2 Pin Functions

Pin	Name	Туре	Function/Description
#			
1	CP1	0	Clamp Pulse 1 (see LM9830 data sheet)
3	CP2	0	Clamp Pulse 2 (see LM9830 data sheet)
5	RST	0	Reset Signal (Integration Control) (See LM9830 data sheet)
7	Φ1	0	Clock Signal – Phase 1 (see LM9830 data sheet)
9	Φ2	0	Clock Signal – Phase 2 (see LM9830 data sheet)
11	TR1	0	Clamp Pulse 1 (see LM9830 data sheet)
13	TR2	0	Clamp Pulse 2 (see LM9830 data sheet)
even pins	DGND	Р	Digital Ground

HDR 3 – Motor Signals

HDR 3 provides monitoring points for the stepping motor control signals and for monitoring the winding current sense signals as the LM9830 sees them.

HDR 3 Pin Functions

Pin	Name	Туре	Function/Description
#			
1	A +	0	"A" winding "+" side logic drive signal
3	А-	0	"A" winding "-" side logic drive signal
5	B +	0	"B" winding "+" side logic drive signal
7	В-	0	"B" winding "-" side logic drive signal
9	B_SENSE	AI	Voltage at "B" winding Current Sense Resistor
11	A_SENSE	AI	Voltage at "A" winding Current Sense Resistor
13	GND_SENSE	AI	Ground Voltage at Motor Drive Circuit
even pins	DGND	Р	Digital Ground

HDR4 – Header for LED current setting resistors

HDR 4 is an 8-pin DIP socket for installing user-provided LED current setting resistors. The pinout of HDR-4 is shown below. Note that HDR-4's pinout DOES NOT conform to "standard" DIP pin numbering.

The current setting resistor for the RED Illuminator (\mathbf{R}) is installed between pins 1 and 2. The current setting resistor for the GREEN Illuminator (\mathbf{G}) is installed between pins 3 and 4. The current setting resistor for the BLUE Illuminator (\mathbf{B}) is installed between pins 5 and 6. Pins 7 and 8 are unused.

JP1 – Unipolar/Bipolar Stepper Configuration Jumpers

<u>JP2 – Full Step/Microstep jumper</u>

<u>JP3 – Host Mode Jumper</u>

JP4 – CIS/CCD Ground Selector Jumper

JP5 – JP7 LED Drive Configuration Jumpers

Board Layout and Connector Locations

